Transition from E906 to E1039

Ming Liu P-25

E906 vs E1039

- Fixed target dimuon experiments for Drell-Yan and J/Psi productions in p+p and p+A
 - Common Forward Muon Spectrometers
 - Very different target systems

- E906 Targets: "simple"
 - 10~20% of nuclear interaction length, >5cm in diameter
 - LH₂ and LD₂, ~50cm long, operate at 20K
 - C, Fe and W
- E1039 polarized target:
 - NH3 operate at 1K, 5T B-field

X

p beam 120 GeV

From E906 to E1039: To Do List

- Target
- Beam line
- DAQ
- Mechanical
- Cryogenics
- Electrical
- Cooling
- Shielding
- Safety Review

E906 Target Cave

B-Field

E906 Targets: LH2, LD2, C, Fe, W

LANL High Density Polarized Proton (NH₃) Target

- Superconducting dipole magnet
 - Temperature ~ 1 K
 - Magnetic Field: 5 Tesla
 - 8cm long NH₃ target
- Proved capable of handling high luminosity up to $\sim 10^{35}$ (Hall C)
 - ~ 10³⁴ (Hall B)

1/7/15 Ming Liu P-25 LDRD Review

Modifications to E906 Setup

Target and Beam Control

- Some changes @IR
 - New space for operation, target change etc
 - New target stand (a platform)
 - Radiation shielding around the target area
- Target operation and maintenance
 - Service lines, Power, Cryogenic systems
 - NMR system, radiation shielding for electronics, network access
 - Space for target changes etc.
- Beam control
 - A new final focusing quadrupoles (Q3 near target)
 - Beam collimator, target magnet quench protection
 - Beam spot position/direction/size monitors
 - Beam position/direction stability
 - Luminosity monitors, Cerenkov, new telescopes

DAQ and Spectrometers

- Spectrometers
 - New switches to Reverse fields of FMag and KMag for spin asymmetry systematic control
- Triggers
 - A new trigger road map to optimize signal from target
- DAQ
 - Improve DAQ bandwidth
 - Slow control integration into DAQ
- Physics asymmetry systematic controls
 - Precision luminosity

Fermilab Engineering and Safety Review

The Experimental Hall: No Change

Target Area

- Targets must be rad. shielded
- E906 target cave too small for Pol. Target
- Issues with target and beam dump separation
- Stability of beam on target

Current E906 Target Cave

1/7/15

Target and Beam Dump Event Separation move the target upstream: Z=-3.5m

Beam on Target: 4-sigma coverage

relative luminosity measurement better than 2x10⁻⁴

Expected Raw Asymmetry:

 $\sim 1\%/10^{\sim}20 = 5 \times 10^{-4}$

Asymetry = $(N^+/R - N^-)/(N^+/R + N^-)$

R = spin-dependent relative luminosity dR <~ 2x10⁻⁴

New Beam Collimator, Focusing Q3 and Target

Target cross section: 18 x 28 mm²

Beam cross section:

Need be well contained within 4 sigma, required by dR< 2x10⁻⁴

sigX = 18/2/4 = 2.2 mm

sigY = 28/2/4 = 3.5 mm

Beam jitter: dX=dY ~ 1mm

1 sig = 0.68269

2 sig = 0.95450

3 sig = 0.99730

4 sig = 0.99994

E906 beam profile:

SigX = 4.0mm

SigY = 3.0mm

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Final focusing Q3

120GeV

beam

Target stick movement: 3.6m to ceiling (tight)

Polarized Target Operation

Mechanical issues:

- Need platform to work around for target insert changes, helium refill, Nitrogen refill
- Stand of target magnet
- Crane or Gantry to lift target, max 2000 lb
- New position -350 cm upstream of FMAG
- Pump connections for evaporation cooling
- Pump connection for separator
- Pump connection for main vacuum
- Placement of liquefier system

Beam entry (8' above ground)

Current E906 Target Cryogenic Service

Next to the E906 Target Cave

Root Pump, Microwave and Mechanical Support

- Chiller for microwave
- Where to locate pump?
 - Cave or outside?
- Connect exhaust of magnet to pump

Shielding and Beam Line Work - work in progress

Radiation Shielding

- Cave/ceiling shielding for new target position
- Electronics around target
 - microwave tube
 - microwave power supply
 - NMR electronics
 - control electronics
 - Magnet power supply, controls
- Calculations for target activation
- Target area radiation monitoring

Beam line and spectrometer

- Beam size requires additional Quads
- Collimator upstream of target
- Beam position interlock, loss monitors
- Spin-sorted luminosity monitor of beam on target

More on Service Needs

Electrical, Water Cooling and Cryogenics

- Pump: 460V
- Fmag and kMAG magnets need field direction switches
- Network close to target
- regular 220 and 110 outlets

- 2.3 lt/min cooling H₂O
- ⁴He and N₂ lines
- Pump lines
- Fermilab Tech support

Safety and Monitoring

- Radiation monitor and safety interlock
- Oxygen deficiency monitor
- Quench lines to outside building
- Activation analysis for target

 Fermilab Engineering and Safety Reviews of cryogenic, electrical, vacuum, water cooling etc.

Schedule and Timeline

- 1. New target area and radiation shielding design and safety review
- 2. Cryogenics System design and installation
- Beam line modifications
- 4. Beam on target monitoring telescopes

Summary

Target and Beam Control

- Some changes @IR
 - New space for operation, target change etc
 - New target stand (a platform)
 - Radiation shielding around the target area
- Target operation and maintenance
 - Service lines, Power, Cryogenic systems
 - NMR system, radiation shielding for electronics, network access
 - Space for target changes etc.
- Beam control
 - A new final focusing quadrupoles
 - Beam collimator, target magnet quench protection
 - Beam spot position/direction/size monitors
 - Beam position/direction stability
 - Luminosity monitors, Cerenkov, new telescopes
- Fermilab Engineering and Safety Review

DAQ and Spectrometers

- Spectrometers
 - New switches to Reverse fields of FMag and KMag for spin asymmetry systematic control
- Triggers
 - A new trigger road map to optimize signal from target
- DAQ
 - Improve DAQ bandwidth
 - Slow control integration into DAQ
- Physics asymmetry systematic controls
 - Precision luminosity

Current E906 Setup

11/3/2014 1/7/15

1